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ABSTRACT

A new method is presented for identifying the local stiffness of a structure from vibra-

tion test data. The method is based on a projection of the experimentally measured flexibil-

ity matrix onto the strain energy distribution in local elements or regional superelements.

Using both a presumed connectivity and a presumed strain energy distribution pattern, the

method forms a well-determined linear least squares problem for elemental stiffness matrix

eigenvalues. These eigenvalues are directly proportional to the stiffnesses of individual el-

ements or superelements, including the cross-sectional bending stiffnesses of beams,

plates, and shells, for example. An important part of the methodology is the formulation of

nodal degrees of freedom as functions of the measured sensor degrees of freedom to ac-

count for the location offsets which are present in physical sensor measurements. Numeri-

cal and experimental results are presented which show the application of the approach to
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example problems.

NOMENCLATURE

Stiffness connectivity matrix

d Node-to-sensor offset distance

EI Beam cross-sectional bending stiffness parameter

Applied force vector

GJ Beam cross-sectional torsional stiffness parameter

Structural flexibility matrix

Identity matrix of size 

Structural stiffness matrix

Transformations between sensor and global degrees of freedom

L Length of structural finite element

Structural mass matrix

Number of finite elements or superelements in model

Number of global degrees of freedom in model

Number of measurement sensor degrees of freedom

Number of stiffness eigenvalues for entire structure or superelement

Number of elemental degrees of freedom in  finite element

Diagonal matrix of elemental stiffness eigenvalues

Diagonal matrix of assembled stiffness eigenvalues for entire structure or
superelement

A[ ]

f{ }

G[ ]

I[ ]a a a×( )

K[ ]

L[ ] H[ ],

M[ ]

ne

ng

nm

np

nα αth

p[ ]
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Rank of  elemental stiffness matrix

Transformation matrix from global to elemental coordinates

Displacement vector

Strain energy and complimentary strain energy

Matrix of dynamic structural eigenvectors (mode shapes)

Static eigenvector matrix

Diagonal matrix of dynamic structural eigenvalues (modal frequencies
squared)

Superscripts

G Global degree of freedom set

E Elemental degree of freedom set

M Measured degree of freedom set

Subscripts

A Analytical prediction

n Measured modal properties

r Residual modal properties

Index indicating element number (property of  finite element)

INTRODUCTION

An important facet of state-of-the-art structural technology is the ability to determine

and monitor the mechanical condition of an aerospace, civil, automotive, or other structure

during both manufacture and operation. Such a capability would lower fabrication costs

and ensure that both performance and safety are maintained during the structural lifetime.

Such technology enables the measurement and identification of the localized stiffness of

rα αth

T[ ]

u{ }

U Uc,

Φ[ ]

κ[ ]

Λ[ ]

α αth
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manufactured components, as well as the detection of errors, flaws, and damage resulting

from fabrication. This technology also enables the development of high fidelity finite ele-

ment models (FEMs) early in the design cycle by allowing validation of local structural

stiffness values at the junctions and interfaces within prototype structural hardware.

The diagnosis of the mechanical condition of a structure is primarily a problem of de-

termining the mass and stiffness distribution within the structure, using a few discrete mea-

surements of the vibration response. This issue remains largely unsolved primarily because

it is an inverse modeling problem. Ordinarily, structural analysis begins with an assumed

set of mechanical properties, from which the dynamic response is simulated. In the current

problem, however, the known quantity is the dynamic response, from which the mechanical

properties must be extracted. A significant amount of research in this area has focused on

the use of a detailed dynamic finite element model to determine the local mechanical prop-

erties. In these methods, the error between modal test data and predicted finite element

modal behavior is minimized by adjusting the parameters which determine the finite ele-

ment model stiffness and mass distribution. While these methods are generally successful

at updating the dynamic model, they ordinarily involve the computationally intensive min-

imization of a nonlinear error norm, and, consequently, are not necessarily appropriate for

on-line, real-time data analysis and damage diagnostics.

A set of algorithms more suitable for on-line monitoring can be found in Kaouk and

Zimmerman (1994), Lim and Kashangaki (1994), and Sheinman (1994). In these methods,

the deviation of the stiffness and mass from a preexisting finite element model is indicated

by residual modal force errors at nodes in the model. These methods indicate the degrees

of freedom (DOF) associated with error or damage, and, using appropriate elemental pro-
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jections, can determine the magnitude of stiffness errors within the structure. However,

these techniques rely exclusively on a subset of measured modal parameters, i.e. the meth-

ods require the analyst to select which of the measured vibration mode shapes and modal

frequencies will be used in the algorithm. This shortcoming is one factor that discourages

the use of these otherwise attractive methods. Because the modes themselves may change

significantly when the stiffness changes, the comparison may be significantly biased by the

selection of modes to include in the comparison set. There is little physical intuition avail-

able for the selection of these modes. Also, these methods find the magnitude of nodally

concentrated errors and stiffness changes, so it is difficult to use them to localize the ele-

mental stiffness errors and changes when the structure has load-path redundancy. A proce-

dure to localize structural damage using a residual modal force error by computing

perturbations to the elemental stiffness parameters was presented by Doebling (1996). This

technique overcame the limitations of some of the previously mentioned methods based on

global nodal stiffness quantities, but did not overcome the limitations associated with mode

selection, i.e. it was still necessary to select a subset of the measured modal parameters to

use in the computations.

The approach that has been the most successful at eliminating the need for selecting a

subset of the measured modal parameters uses the mode information in the form of the

structural flexibility matrix. The structural flexibility matrix is defined (for a structure with

no rigid body modes) as the inverse of the static stiffness matrix. Thus, for a generalized

static displacement vector in global FEM coordinates, , and a generalized static force

vector in global FEM coordinates, , the stiffness and flexibility matrices can be de-

fined as

uG{ }

fG{ }
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(1)

If the full set of structural mode shapes in the global FEM coordinate set, , is known,

then the static flexibility matrix can be formed via

(2)

where  is a diagonal matrix of the modal frequencies squared. In practice, however, a

subset of the total number of structural modes is actually measured. Denoting the measured

mode shapes in the global DOF set as  and the diagonal matrix of measured model

frequencies squared as , then the structural flexibility matrix in the global FEM DOF

set , can be formed via

(3)

where  is the “residual flexibility matrix” representing the contributions to 

from the unmeasured modes. Likewise, the structural flexibility matrix in the experimental

measurement DOF set , can be formed using the measured mode shapes in the exper-

imental measurement DOF set  as

(4)

Efficient, reliable methods for measuring perhaps 60 to 100 modes of a structure have made

it possible to determine accurate structural flexibility matrices using Eq. (4), although the

success is largely dependent on the quality of the experimental configuration and the sys-

tem identification algorithm used in the data analysis (see Peterson, 1995, Peterson and

Alvin, 1997). One limitation on the accuracy of flexibility estimation is the inability to de-

termine the full residual flexibility matrix under practical testing constraints. This issue is

discussed by Doebling, et al. (1996), where a method is presented for estimating the full

residual flexibility matrix when the excitations and responses are not fully collocated.

fG{ } KG[ ] uG{ }= uG{ } GG[ ] fG{ }=

ΦG[ ]

KG[ ] 1– GG[ ] ΦG[ ] Λ[ ] 1– ΦG[ ]T= =

Λ[ ]

Φn
G[ ]

Λn[ ]

GG[ ]

GG[ ] Φn
G[ ] Λn[ ] 1– Φn
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G[ ]+=
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Some techniques that have been used to analyze the measured flexibility matrix to de-

termine local stiffness changes in the structure involve estimating the rank-deficient global

structural stiffness matrix in measurement coordinates, , from the measured flexibil-

ity matrix using a pseudoinverse operator (see Strang, 1988). The basic equation for these

techniques is:

(5)

The pseudoinverse is used in this case rather than the strict inverse because the modal flex-

ibility matrix , which is formed only from the measured mode shapes and modal fre-

quencies (not including the effects of residual flexibility), is rank deficient when the

number of measured modes is less than the number of measurement sensors. The formula-

tion of the “measured” stiffness matrix in this manner was proposed by Alvin, et al. (1995)

and was employed by Peterson, et al. (1993) for the purpose of damage identification by

comparing the measured stiffness matrices before and after damage had occurred. Al-

though this technique circumvented the problems associated with selection of modes by

simply using all of the identified modes in Eq. (5), the method had no way of preserving

the proper load paths in the structure. Thus for a redundant (statically indeterminate) struc-

ture, the elemental stiffness parameters could not be extracted. Also, the pseudoinversion

of the measured flexibility spreads the error, which tends to be concentrated in specific par-

titions of , throughout all the stiffness matrix entries, so that it is difficult to isolate

the specific elements which have a high error content.

This paper presents a generalized method for the determination of local stiffness param-

eters based on the decomposition of the measured flexibility matrix into the individual stiff-

ness parameters of an assumed set of superelements within the structure. The presumption

Kn
M[ ]

Kn
M[ ] Gn

M[ ]+ Φn
M[ ] Λn[ ] 1– Φn

M[ ]T( )+= =

Gn
M[ ]

Gn
M[ ]
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is that the load paths of the structure are known within superelements whose boundaries are

defined by the measurement sensors. Using the presumed connectivity and strain energy

distribution pattern, a solution of the “flexibility matrix disassembly problem” is presented

which always determines a unique solution for the stiffness parameters of the superele-

ments. The use of the flexibility matrix rather than individual modes circumvents the prob-

lems with mode selection. The use of the flexibility matrix rather than the measured

stiffness matrix circumvents the problems associated with the pseudoinversion of the flex-

ibility matrix. Additionally, the use of an assumed set of elemental connectivity ensures

that the computed elemental stiffness values will be consistent with the load paths in the

structure as idealized by a finite element model.

The key to this procedure is the fact that any structural superelement can be presumed

to be a combination of elemental stiffness eigenvectors, which correspond to statically

equilibrated static deformation shapes of the structure. (These should not be confused with

the structural  and  eigenvectors, which are associated with modes of vibration).

A well-determined linear problem is defined, which can be solved for the elemental stiff-

ness eigenvalues of the presumed superelements. These elemental stiffness eigenvalues

correspond to elemental stiffness parameters such as EA, EI, and GJ. For example, for

2DOF truss elements, the stiffness parameters are the longitudinal spring stiffnesses; for

beams in three dimensions they are the extensional stiffness, the torsional stiffness, and the

two cross-sectional bending stiffnesses; and for plates they are the corresponding bending

and extensional stiffnesses. More general elements, including those for orthotropic materi-

als and shells, are also included within this framework. However, these elements require

the addition of linear side constraints on the stiffness parameters. It should be noted that

M[ ] K[ ]
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any superelement can be included provided there is an underlying set of shape functions or

other parameters which define the elemental strain energy distribution.

The practical implementation of the flexibility disassembly method requires the consid-

eration of how measurement degrees of freedom at the sensors correspond to the nodal de-

grees of freedom used in the corresponding superelement discretization. This consideration

compensates for the fact that the global DOF measurements are generally inferred from

translational sensor measurements made at several locations which are physically offset

from the node. The measurement sensors are presumed to fully determine or overdetermine

the nodal degrees of freedom at a point by rigid connections. This requirement results in a

well-formulated linear algebra problem to solve for the flexibility matrix in FEM DOF

from measurement DOF.

The paper is organized as follows: The first section presents the theory whereby the glo-

bal stiffness matrix is parameterized using the elemental stiffness eigenvalues and eigen-

vectors. The second section formulates the disassembly problem to solve for the elemental

stiffness eigenvalues using a known global stiffness matrix and elemental stiffness eigen-

vectors. Next, the theory for applying disassembly to the global flexibility matrix is pre-

sented, where an equivalence of complementary and ordinary strain energy is used to

formulate a square, invertible linear algebra problem for the local stiffness parameters. The

projection of the nodal DOF onto the measurement DOF is considered next, allowing the

flexibility disassembly process to be applied to an experimentally measured flexibility ma-

trix. The paper concludes with application of the technique to numerical and experimental

data from a cantilevered beam.
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PARAMETERIZATION OF THE ELEMENTAL AND GLOBAL STIFFNESS 
MATRICES

This section presents the formulation of the quantities necessary for the disassembly of

the measured stiffness and flexibility matrices. Begin by presuming that the global stiffness

of the structure can be modeled using an assemblage of  finite elements or superele-

ments, connecting  global DOF, . Each of the  elements itself connects elemen-

tal DOF for the  element, , which has size . The corresponding

 elemental stiffness matrix in this coordinate basis is . If the elemental

DOF are related by a rectangular transformation  to the global DOF as

(6)

then the global stiffness matrix can be formed by assembling all the elemental matrices ac-

cording to

(7)

The  elemental-to-global DOF transformation matrices  include coordinate

rotations from the elemental frames to the global frame, the table lookup for the correspon-

dence between elemental and global DOF, and the effect of constraints such as pinned or

fixed connections. 

It is important to note that Eq. (7) is not a minimum-rank definition of the disassembly

problem, because only some of the unknowns in the elemental matrices  are inde-

pendent. Thus, besides being symmetric, each elemental stiffness matrix is always rank-de-

ficient. Because  is symmetric, it has  unknown entries, but because

of its rank, only a few of these are actually independent unknowns. Consider as an example

ne

ng uG{ } ne

αth uE{ }α nα 1×( )

nα nα×( ) KE[ ]α

T[ ]α

uE{ }α T[ ]α uG{ }=

KG[ ] T[ ]α
T KE[ ]α T[ ]α

α 1=

ne

∑=

nα ng×( ) T[ ]α

KE[ ]α

KE[ ]α nα nα 1+( )( ) 2⁄
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a simple spring element connecting two nodes, each of which includes three (x,y,z) dis-

placements as DOF. Because this elemental stiffness matrix is 6x6, it potentially has 21 un-

known elements. However, the rank of the elemental stiffness matrix is only 1 because of

the stiffness connectivity, and therefore the stiffness of the element is completely specified

by the value of 1 unknown parameter, which, in this case, is the axial stiffness of the spring.

In general, then, it is necessary to decompose the rank  elemental stiffness matrix

 into its static eigenvalues and eigenvectors so that

(8)

in which  is the  matrix of static eigenvectors for the  element, and 

is a diagonal matrix of size  containing the nonzero static eigenvalues  for

the  element. Physically, the columns of  are the distinct, statically equilibrated de-

formation shapes of the element which have nonzero strain energy. They are normalized to

have unit magnitude, such that

(9)

The static decomposition of Eq. (8) can be substituted into Eq. (7) to get

(10)

This expression can be further simplified to

(11)

where the “stiffness connectivity matrix”  is a sparse matrix defined by

(12)

rα

KE[ ]α

KE[ ]α κ[ ]α p[ ]α κ[ ]α
T=

κ[ ]α nα rα× αth p[ ]α

rα rα×( ) p{ }α

αth κ[ ]α

κ[ ]α
T κ[ ]α I[ ]rα

=

KG[ ] T[ ]α
T κ[ ]α p[ ]α κ[ ]α

T T[ ]α

α 1=

ne

∑=

KG[ ] A[ ] P[ ] A[ ]T=

A[ ]

A[ ] T[ ]1
T κ[ ]1( ) T[ ]2

T κ[ ]2( ) … T[ ]ne

T κ[ ]ne
( )[ ]=
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and  is a diagonal matrix, size , of the assembled elemental stiffness eigen-

values  where

(13)

The columns of  mathematically embody the connectivity of the structure by defining

how a particular superelement stiffness parameter  influences the stiffness at the struc-

tural DOF. It is important to note that Eq. (11) does not imply that the  are the eigen-

values of . This is because the columns of  do not generally form an orthogonal

basis for the global stiffness matrix .

Examples of Elemental Stiffness Parameterization for Representative Elements

Most generally, the columns of  can be considered to be the eigenvectors of the

static condensation of a superelement’s stiffness matrix onto its boundary DOF. In this

sense, they can be derived from a solution of a partial differential equation or a finite ele-

ment model. The only constraint is that the resulting stiffness parameters  must have

a physical interpretation in terms of the stiffness of the superelement. Consider as a first

example a spring or truss element with stiffness  connecting two nodes, as shown in Fig-

ure 1. For this element, the stiffness matrix is

(14)

Computing the eigen-decomposition on  yields the corresponding stiffness eigenvec-

P[ ] np np×( )

P{ }

P{ }

p{ }1

p{ }2

…
p{ }ne 

 
 
 
 
 
  P1

P2

…
Pnp 

 
 
 
 
 
 

= =

np rα

α 1=

ne

∑=

A[ ]

Pi

P{ }

KG[ ] A[ ]

KG[ ]

κ[ ]α

p{ }α

k

KE[ ] k k–

k– k
= uE{ }

u1

u2 
 
 

=

KE[ ]
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tors and eigenvalues:

(15)

As a second example, consider a beam element connecting two 6 DOF nodes, as shown in

Figure 1. For this element, the elemental DOF are

(16)

and the corresponding stiffness eigenvectors and parameters are listed in Appendix A. No-

tice that for each beam cross-sectional bending stiffness, there are two corresponding pa-

rameters. In any calculation for the parameters, each pair of bending eigenvalues are

constrained through their linear dependence on the corresponding .

It should be noted that the existence of the unusual mixed units of length and radians in

the beam element eigenvectors is a consequence of the orthonormality of  and the units

of the displacement vector of the beam element. The mixed units do not affect the units of

the resulting stiffness matrix. The mixed units arise because the displacement vector for the

beam element contains DOF of both length and angle units. By analogy, observe that the

units of the 2-norm of a vector with mixed units will have mixed units. When the elemental

stiffness matrix is formed using these mixed-unit eigenvectors and eigenvalues, the linear

combinations of parameters cancel out the mixed units leaving each entry in the matrix with

only a single unit definition. Thus, the mixed units merely exist in the intermediate quanti-

ties , , and , and not in the elemental or global stiffness matrices.

κ[ ]

1

2
-------

1

2
-------–

= p{ } 2k=

uE{ } u1v1w1θx1
θy1

θz1
u2v2w2θx2

θy2
θz2

T=

EI

κ[ ]

κ[ ] A[ ] P[ ]
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DISASSEMBLY OF THE GLOBAL STIFFNESS MATRIX IN GLOBAL 
COORDINATES

In this section, the disassembly procedure is outlined and applied to the global stiffness

matrix, . While the disassembly of the global stiffness matrix is not practical to im-

plement on measured data, it is useful for illustrating the derivation of global flexibility ma-

trix disassembly. Consider the situation where the global stiffness matrix  and a

connectivity matrix  are known, and the stiffness parameters  are to be determined.

The corresponding problem statement contained in Eq. (11) includes as unknowns the 

elements of . The number of equations is equal to the number of unique elements in

. Because of symmetry, there are  equations and  unknowns. Ex-

cept for the pathological case in which the assumed connectivity has precisely redundant

load paths in its element definitions, there can never be more unknowns than equations. An

example of such a case is a pair of springs in parallel between the same DOF, such that two

columns of  are identical. Even for a completely redundant structure the solution is

overdetermined, because in such a structure there is an equivalent spring from each DOF

to each other DOF and from each DOF to ground for a total of  unknown

elements of . Thus, it will be true that for any structure with a non-pathological pre-

sumed connectivity that

(17)

Consequently, the above disassembly problem always has fewer unknowns than equations,

and thus a unique least-squares solution always exists.

To compute the solution to this problem, however, it is necessary to recast the matrix

formulation of Eq. (11) in a form amenable to linear equation solvers by writing down each

KG[ ]

KG[ ]

A[ ] P{ }

np

P{ }

KG[ ] ng ng 1+( )( ) 2⁄ np

A[ ]

ng ng 1+( )( ) 2⁄

P{ }

np

ng ng 1+( )
2

-------------------------≤
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element. The most convenient form is summation (tensor) notation, in which repeated in-

dices indicate a sum over the values of that index, as shown in Zienkiewicz and Taylor

(1994). Define  to be the tensor equivalent of , define  to be the tensor equiv-

alent of , and define  to be the tensor equivalent of . In this notation,

 and . Then, Eq. (11) can be written as

(18)

This tensor equation is equivalent to the following linear algebra problem

(19)

in which is formed from the  unique elements of  by cycling i from

1 to  and j from i to . The corresponding  row of  is given by

(20)

(The values of j from 1 to i-1 are omitted because they are redundant as a consequence of

the symmetry of .) Note that the matrix  is a tall, rectangular matrix, and thus Eq.

(19) can be solved uniquely for . As a practical matter,  is a sparse matrix, and so

Eq. (19) is solved using sparse linear algebra subroutines (such as those available in MAT-

LAB (1996)) instead of forming its pseudoinverse.

Application to a Simple Spring System

To illustrate and clarify disassembly of the global stiffness matrix, consider the simple

2 DOF, 3 element spring system shown in Figure 2. The global DOF are defined to be

(21)

Kij
G KG[ ] Aiβ

A[ ] Pβ P{ }

i j 1…ng{ }∈, β 1…np{ }∈

Kij
G AiβPβAjβ=

AiβAjβ( )Pβ=

C[ ] P{ } B{ }=

B{ } ng ng 1+( )( ) 2⁄ Kij
G

ng ng i j,( ) C[ ]

Cij Ai1Aj1 Ai2Aj2 … Ainp
Ajnp

=

KG[ ] C[ ]

P{ } C[ ]

uG{ }
u1

u2 
 
 
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The necessary quantities for Element 1 are

(22)

and for Element 2 are

(23)

and for Element 3 are

(24)

The resulting connectivity matrix, formed using Eq. (12), is

(25)

and the global stiffness matrix is found using Eq. (11) as

uE{ }1 u1= T 1 1 0= KE[ ]1 k1=

κ 1

1

2
-------= P1 2k1=

uE{ }2

u1

u2 
 
 

= T 2
1 0

0 1
=

KE[ ]2
k2 k2–

k2– k2

= κ 2

1

2
-------

1

2
-------–

 
 
 
 
 
 
 

=

P2 2k2=

uE{ }3 u– 2= T 3 0 1–=

KE[ ]3 k3= κ 3

1

2
-------=

P3 2k3=

A
1

2
------- 1 1 0

0 1– 1–
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(26)

which can also easily be formulated using the classical finite element approach. Using the

known global stiffness matrix from Eq. (26), it is then straightforward to formulate  as

(27)

and  using Eq. (20) as

(28)

The values of  can then be recovered from the elements of  using Eq. (19) by

solving

(29)

Note that the resulting  matrix is full rank and invertible; therefore, this problem can be

KG[ ] 1

2
------- 1 1 0

0 1– 1–

2k1 0 0

0 2k2 0

0 0 2k3
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2
-------

1 0

1 1–

0 1–

=

1
2
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0 1– 1–
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0 1– 0

0 1 1

=

P{ } KG[ ]

1
2
---

1 1 0

0 1– 0

0 1 1

P1

P2

P3
 
 
 
 
 
 
 

k1 k2+

k2–

k2 k3+ 
 
 
 
 

=

C[ ]
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solved exactly. The resulting solution of Eq. (29) is

(30)

and these values of  are consistent with those defined at the beginning of the example.

Thus, if the global stiffness matrix  was known from an experiment, then stiffness dis-

assembly could be applied as in Eq. (29) to determine the elemental stiffness parameters 

and thus the elemental spring stiffness constants .

DISASSEMBLY OF THE GLOBAL FLEXIBILITY MATRIX IN GLOBAL 
COORDINATES

In most cases the above formulation of the disassembly problem is impractical for ap-

plication to experimental data, since it requires the numerical inversion of  to get

, as discussed in the introduction. The following alternative algorithm avoids this

problem by formulating the disassembly problem in terms of the flexibility matrix. It has

additional advantages over stiffness disassembly that are described at the end of the section.

First note that for a given deformation of the structure with values , the total strain

energy is

(31)

and the complementary strain energy for the corresponding nodal force vector  is

(32)

For a linear structure, the nodal forces and displacements are related as in Eq. (1). Assum-

P1

P2

P3
 
 
 
 
 
 
 

2k1

2k2

2k3
 
 
 
 
 
 
 

=

Pi

KG[ ]

Pi

ki

GG[ ]

KG[ ]

uG{ }

U
1
2
--- uG{ }T

KG[ ] uG{ }=

fG{ }

Uc
1
2
--- fG{ }T

GG[ ] fG{ }=



Experimental Determination of Local Structural Stiffness by Disassembly of Measured Flexibility Matrices
Scott W. Doebling, Lee D. Peterson, Kenneth F. Alvin

11/24/98 Page 19 of 38

ing that energy is conserved and that the structure behaves linearly, the strain energy and

complimentary strain energy are equal, . Equating Eq. (31) and Eq. (32) to enforce

this assumption yields

(33)

Substituting the definition of  from Eq. (1) into Eq. (33) yields

(34)

Denoting the columns of  by , Eq. (11) can be written as

(35)

This implies via Eq. (34) that

(36)

Since Eq. (36) must apply for any applied force pattern , a well-posed problem can be

formed to solve for  by choosing  different force vectors which span the possible

complementary strain energy states of the structure. The columns of  satisfy this re-

quirement because they include as a coordinate basis the elemental eigenvectors . Ap-

plying a force vector  to Eq. (36) yields

U Uc=

uG{ }T
KG[ ] uG{ } fG{ }T

GG[ ] fG{ }=

uG{ }

fG{ }T
GG[ ] KG[ ] GG[ ] fG{ } fG{ }T

GG[ ] fG{ }=

A[ ] Aβ{ }

KG[ ] pβ Aβ{ } Aβ{ }T

β 1=

np

∑=

pβ fG{ }T
GG[ ] Aβ{ } Aβ{ }T

GG[ ] fG{ }( )
β 1=

np

∑

fG{ }T
GG[ ] fG{ }=

fG{ }

P{ } np

A[ ]

κ[ ]

fG{ } Aα{ }=
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(37)

So, as with stiffness disassembly, the problem is of the form

(38)

where now the  entry of  is

(39)

and the  entry in  is

(40)

This formulation in terms of the flexibility matrix has several advantages over the stiff-

ness disassembly formulation of Eq. (19). First, it avoids the need to form  by pseudo-

inverting the generally rank-deficient . Second, the matrix  can be shown to be

positive definite. This means that the stiffness parameters  are positive provided that

the elements of  are positive. Physically, each row of  is the complementary strain

energy associated with the applied force vector , which must be non-negative by the

definition of strain energy. Finally, this set of equations is square and generally invertible,

unless the connectivity matrix  is improperly formed to allow internal rigid body modes

in the structure.

OBTAINING GLOBAL FLEXIBILITY FROM EXPERIMENTALLY MEASURED 
FLEXIBILITY

The formulation of flexibility disassembly so far is insufficient to solve most practical

pβ Aα{ }T
GG[ ] Aβ{ } Aβ{ }T

GG[ ] Aα{ }( )
β 1=

np

∑

Aα{ }T
GG[ ] Aα{ }=

α 1…np=

C[ ] P{ } B[ ]=

α β,( ) C[ ]

Cαβ Aα{ }T
G[ ] Aβ{ } Aβ{ }T

G[ ] Aα{ }=

αth B{ }

Bα Aα{ }T
G[ ] Aα{ }=

KG[ ]

GG[ ] C[ ]

P{ }

B{ } B{ }

Aα{ }

A[ ]
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problems, because it fails to address the fact that the flexibility matrix is measured at a set

of measurement sensor DOF, not at the actual global DOF of the finite element model. A

common case in which this occurs is shown in Figure 3. Although the 2 dimensional beam

element has 2 DOF at each node,  and , they are never directly measured. The mea-

surements are only made at the DOF defined as  and . Thus it is necessary to define

a transformation from the flexibility matrix , defined with respect to the measurement

degrees of freedom , to the flexibility matrix , defined with respect to the finite

element model global DOF , and suitable for use in the flexibility disassembly equa-

tions of the previous section.

To derive the required relationship, first a transformation matrix  is introduced that

relates the global DOF  to the measured DOF  as

(41)

The transformation matrix  has dimension , and is usually computed by us-

ing the kinematic relationships between the measurement DOF and the FEM global DOF,

as shown in Greenwood (1988). The inverse transformation to complement Eq. (41) can be

written as

(42)

where

(43)

To ensure that a unique pseudoinverse exists in Eq. (43), it is required that . It

should be noted that this requirement can produce a large experimental channel count, and

so in a practical situation the number of global DOF must be restricted to keep the number

of required measurements at a reasonable level.

vi
G θzi

G

ui
M vi

M

GM[ ]

uM{ } GG[ ]

uG{ }

H[ ]

uG{ } uM{ }

uM{ } H[ ] uG{ }=

H[ ] nm ng×( )

uG{ } L[ ] uM{ }=

L[ ] H[ ]+=

nm ng≥
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The relationship between  and  is derived starting from the definition of the

global flexibility matrix using the full set of structural modes:

(44)

Using the transformation in Eq. (42), the global mode shape matrix can be written as

(45)

Substituting Eq. (45) into Eq. (44) and simplifying yields the transformation equation from

 to :

(46)

Thus, once  is determined from the measured mode shapes, modal frequencies, and

residual flexibility using Eq. (4), then  can be determined using Eq. (46). The com-

putation of  from the measured modal quantities is further discussed in Doebling, et

al. (1996).

Numerical Example of Flexibility Disassembly

In this section, the disassembly of measured flexibility is demonstrated for simulated

data from a 2-dimensional, 2-element, 4DOF cantilevered beam, shown in Figure 3. The

global and measured DOF are related by the following kinematic relationships (assuming

 is small enough such that  and ):

(47)

Define the global and measurement DOF displacement vectors as

GM[ ] GG[ ]

GG[ ] ΦG[ ] Λ[ ] 1– ΦG[ ]T=

ΦG[ ] L[ ] ΦM[ ]=

GM[ ] GG[ ]

GG[ ] L[ ] GM[ ] L[ ]T=

GM[ ]

GG[ ]

GM[ ]

θ θ θ≈sin θ 1≈cos

u1
M dθz1

G–=

u2
M dθz2

G–=

v1
M v1

G=

v2
M v2

G=
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(48)

Observing Eq. (47) and Eq. (48), along with the definitions in Eq. (41) and Eq. (42) indi-

cates that the  and  matrices are

(49)

Using the element  and  for a beam from Appendix A, and removing the parameters

and corresponding columns of  that do not include  (since that is the only param-

eter of interest as this is a two-dimensional, bending-only analysis) yields

(50)

Suppose that the geometric and material properties are

(51)

uG{ }

v1
G

θz1
G

v2
G

θz2
G

 
 
 
 
 
 
 
 
 

= uM{ }

u1
M

v1
M

u2
M

v2
M

 
 
 
 
 
 
 
 
 

=

H[ ] L[ ]

H[ ]

0 d– 0 0

1 0 0 0

0 0 0 d–

0 0 1 0

= L[ ]

0 1 0 0

1
d
---– 0 0 0

0 0 0 1

0 0
1
d
---– 0

=

κ[ ] p{ }

κ{ } EIzz

κ[ ]

0
2

L2 4+
-------------------

1

2
-------–

L

2 L2 4+
---------------------------

0
2–

L2 4+
-------------------

1

2
-------

L

2 L2 4+
---------------------------

=

p{ }

2EIzz

L
-------------

6EIzz L2 4+( )
L3

---------------------------------
 
 
 
 
 
 
 

=

EIzz 607Nm2=

ρA 1.75kg m⁄=

L 0.75m=

d 0.02m=
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Then the expressions of Eq. (50) can be evaluated to get

(52)

The transformation  for each element is

(53)

so  is formed using Eq. (12) to get

(54)

and the analytical values of  are formed using Eq. (13) to get

(55)

Now the measured flexibility matrix will be simulated and disassembled to show that

the extracted parameters are the same as in Eq. (55). Using the continuous solution for a

Bernoulli-Euler beam (Blevins, 1993), the first modal eigenvalue and mode shape at the

measurement DOF are

κ[ ]

0 0.6621

0.7071– 0.2483

0 0.6621–

0.7071 0.2483

= p{ } 1.62 3×10

3.94 4×10 
 
 
 
 

=

T[ ]

T1[ ]

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

= T2[ ]

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

A[ ]

A[ ]

0 0.6621– 0 0.6621

0.7071 0.2483 0.7071– 0.2483

0 0 0 0.6621–
0 0 0.7071 0.2483

=

Pi

P{ }

1.62 3×10

3.94 4×10

1.62 3×10

3.94 4×10 
 
 
 
 
 
 
 
 

=
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(56)

The measured flexibility matrix is computed using Eq. (4) (without the effects of residual

flexibility) to get

(57)

The residual flexibility matrix (which can be simulated by summing a large number of con-

tinuous modes or subtracting the modal flexibility from the analytical stiffness matrix) is

then

(58)

Summing the residual and modal flexibility yields the measured flexibility matrix:

(59)

The measured flexibility  is then converted to global DOF coordinates using Eq. (46)

to get

ΦM[ ]

1.92–
2–×10

4.19 1–×10

2.27– 2–×10

1.23

= Λ[ ] 847.8=

Gn
M[ ]

4.35e 7– 9.49– e 6– 5.14e 7– 2.79– e 5–

9.49e– 6– 2.07e 4– 1.12e– 5– 6.08e 4–

5.14e 7– 1.12– e 5– 6.08e 7– 3.29– e 5–

2.79– e 5– 6.08e 4– 3.29– e 5– 1.78e 3–

=

Gr
M[ ]

6.16e 8– 2.04e 7– 1.78e– 8– 9.54e 8–

2.04e 7– 2.43e 5– 1.94e 6– 3.15e– 5–

1.78e– 8– 1.94e 6– 3.82e 7– 4.06– e 6–

9.54e 8– 3.15e– 5– 4.06– e 6– 5.45e 5–

=

GM[ ] Gn
M[ ] Gr

M[ ]+

4.94e 7– 9.28– e 6– 4.94e 7– 2.77e– 5–

9.28– e 6– 2.31e 4– 9.26– e 6– 5.80e 4–

4.94e 7– 9.26– e 6– 9.86e 7– 3.71– e 5–

2.77– e 5– 5.80e 4– 3.71– e 5– 1.85e 3–

= =

GM[ ]
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(60)

Substituting Eq. (60) and Eq. (54) into Eq. (38) and solving for  yields

(61)

Comparing Eq. (61) and Eq. (55) demonstrates that the proper parameters are recovered

from the simulated flexibility matrix.

EXPERIMENTAL APPLICATION

A series of modal vibration tests was performed on a simple cantilevered beam struc-

ture. The test setup for this structure is shown in the photo of Figure 4. A schematic of the

test structure is shown in Figure 5, including the instrumentation and test input location.

The test parameters and modal parameter identification procedure used are described by

Doebling, et al. (1996). Two disassembly analyses were performed on the data to solve for

the cross section stiffness parameter, : one using a single-element, 2-DOF discretiza-

tion, and one using a two-element, 4-DOF discretization, as shown in Figure 6.

For the single-element discretization, the experimentally determined, statically com-

plete flexibility matrix for this test, as derived by Doebling and Peterson (1996), is

(62)

GG[ ]

2.31e 4– 4.64e 4– 5.76e 4– 4.64e 4–

4.64e 4– 1.24e 3– 1.39e 3– 1.24e 3–

5.76e 4– 1.39e 3– 1.84e 3– 1.85e 3–

4.64e 4– 1.24e 3– 1.85e 3– 2.48e 3–

=

P{ }

P{ }

1.62 3×10

3.94 4×10

1.62 3×10

3.94 4×10 
 
 
 
 
 
 
 
 

=

EIzz

GG[ ] 0.0016 0.0019

0.0019 0.0023
=
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Using the assumed analytical values of the parameters, and assuming that the boundary

condition is perfectly cantilevered yields the analytically predicted static flexibility matrix

(63)

For the one-element discretization, the stiffness connectivity matrix  can be re-

duced from Eq. (54) to get

(64)

Performing disassembly on  from Eq. (62) yields a parameter value of

, which is a 2.8% difference from the analytically predicted value, as shown

in Table 1. For the two-element discretization, the stiffness connectivity matrix is the same

as in Eq. (54). The  values for the two-element disassembly both have about 10% differ-

ence from the analytically predicted value, and are also shown in Table 1. Thus, for both

the one-element and two-element discretizations, the cross-sectional stiffness parameter

 determined using disassembly of the measured flexibility matrix has reasonably accu-

rate values.

A final note about this experimental example of flexibility disassembly: It seems coun-

terintuitive at first that the result for the 2-element discretization is less accurate with re-

spect to the analytically predicted value that the single-element discretization, because in

finite element analysis it is generally assumed that a more refined mesh will lead to more

accurate results, especially when predicting modal dynamic behavior. However, because

this is an inverse problem, the elemental properties are being computed from the data, rath-

GG[ ]A
0.0018 0.0018

0.0018 0.0024
=

A[ ]

A[ ] 0 0.6621–

0.7071 0.2483
=

GG[ ]

EI 624Nm2=

EI

EI
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er than the reverse process in a typical analytical modal analysis. Thus, usual assumptions

regarding mesh refinement are not really applicable. Originally, it was hypothesized that

this apparent decrease in accuracy arose from the introduction of additional elements into

the model and thus the introduction of additional unknowns into the problem. However, be-

cause additional measurements are introduced at the same time, the ratio of equations to

unknowns in the problem stays constant. However, it is possible that in this particular prob-

lem the additional measurements at the midpoint of the beam introduced in the two-element

analysis may corrupt the results because of lower signal magnitude and therefore lower sig-

nal-to-noise ratio. Of course, it is also possible that the assumed “true” value of elastic mod-

ulus for the beam is erroneous, and that the computed value of the modulus from the 2-

element discretization is actually closer to the true value.

CONCLUSIONS

A method has been developed which makes it possible to measure local structural stiff-

ness by disassembly of a measured flexibility matrix. The method presumes a connectivity

pattern for the structure and solves for the eigenvalues and eigenvectors of the elemental

stiffness matrices. It was shown that a unique solution of this problem exists for all struc-

tures, except when redundant elements are presumed in the connectivity pattern. The meth-

od has also been extended to address the more realistic instance where a mismatch exists

between the measured DOF and the nodal DOF of the presumed connectivity pattern. Nu-

merical and experimental applications to a cantilevered beam problem were presented to

demonstrate the feasibility of the proposed method.
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Table 1. Difference Between Analytically Predicted EI and 
Experimentally Determined EI for Cantilevered 
Beam 

Discretization Element EI Difference 

1-Element Element 1 2.8%

2-Element
Element 1 10.5%

Element 2 9.9%
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Figure 1: 2-DOF Spring (Truss) and 12-DOF Beam Elements
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Figure 2: 2-DOF Spring (Truss) System
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Figure 3: 2 Element Cantilevered Beam to Illustrate the Effect of 
Sensor Offsets
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Figure 4: Cantilevered Beam Test Setup
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Figure 5: Schematic of Cantilevered Beam Test Structure
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Figure 6: One-Element and Two-Element Cantilevered Beam 
Discretization Models
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APPENDIX A: ELEMENTAL EIGENSOLUTION FOR BEAM ELEMENT

The parameters  and  for the 4-th order Bernoulli-Euler beam element in three

dimensional space are

κ[ ] p{ }

κ[ ]

1

2
------- 0 0 0 0 0

0 0 0
2

L
2

4+

------------------- 0 0

0 0 0 0 0
2

L
2

4+

-------------------

0
1

2
------- 0 0 0 0

0 0 0 0
1

2
------- L

2 L
2

4+

---------------------------–

0 0
1

2
-------–

L

2 L
2

4+
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